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7.3 Linear Systems of Equations.  

Gauss Elimination



Solution of Simultaneous Linear 

Equations

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

Two ways of solving them directly:

(1) elimination (explain later);

(2) determinants (Cramer's rule), which gives

     the solution as a

n n
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Gaussian Elimination

Forward Elimination

2 u +    v +  w =  1              (1)

4 u +    v         = -2              (2)

-2 u + 2 v +  w =  7              (3)

Step 1: equation (2) +(– 2) x equation (1)

Step 2: equation (3) + (+1) x equation (1)

2 u +   v +    w  =  1            (4)

- v  - 2 w  = - 4           (5)

3 v + 2 w  =   8           (6)

Step 3: equation (6) + (+3) x equation (5)

2 u +   v +    w   =  1            (7)

- v  - 2 w  = -4            (8)

- 4 w  = -4            (9)

Backward Substitution

w = 1

v = 2

u = -1

pivot

pivot



Elementary Transformation of 

Matrices – (i)
An elementary matrix of the first kind it an

 diagonal matrix formed by replacing the

th diagonal element of identity matrix  with

a nonzero constant . For example, if 4,  3
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Elementary Transformation of 

Matrices – (ii)

An elementary matrix of the second kind is an

 matrix  formed by interchanging anytwo rows 

 and  of the identity matrix . For example, 

if 4,  1 and 3
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Elementary Transformation of 

Matrices – (iii)
An elementary matrix of the third kind it an

 matrix  formed by inserting the a nonzero

constant  into the off-diagonal position ( , ) of 

the identity matrix . For example, if 4,  3 and

1
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Elementary Row Operation

Any row manipulation can be accomplished 

by pre-multiplication of elementary 

matrices!

:  multiplication of all elements of the th row

              in  by a constant ;

:  interchange of the th and th row in ;

:  addition of a scalar multiple  of the th row

             

n p

n p

n p
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q
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to the th row.i



Elementary Column Operation

Any column manipulation can be 

accomplished by post-multiplication of 

elementary matrices!

:  multiplication of all elements of the th column

              in  by a constant ;

:  interchange of the th and th column in ;

:  addition of a scalar multiple  of the th column
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         to the th column.i



Gaussian Elimination = Triangular Factorization

2 1 1 u 1

4 1 0 v 2

-2 2 1 7

                 3 elimination steps

2 1 1 1

0 1 2 4

0 0 4 4

    upper triangular!!!
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31

Step 1: 2nd equation + (-2) 1st equation  

1 0 0

where,              2 1 0

0 0 1

Step 2: 3rd equation + (+1) 1st equation  

1 0 0

where,              0 1 0

1 0 1

Step 3: 3rd equa
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32 31 21

32 31 21

32 31 21

1 1 1 1

21 31 32

1 1 1

21 31 32

1 0 0

ˆLet 2 1 0

1 3 1

ˆ

1 0 0

where 2 1 0

1 3 1

Note that 2, -1 and -3 are the negative values

of the multipliers u
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21

31 32

1 0 0

                    1 0

1

Thus,   is the quantity that multiply row  when

it is subtracted from row  to produce zero in the

( , ) entry.
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Conclusion

If no pivots are zero, the matrix  can be written as 

a product .   is a lower triangular matrix with 1's 

on the main diagonal.   is an upper triangular matrix.

The nonzero entries of  are the coe

A

LU L

U

U fficients of the 

equations which appear after elimination and before

back-substitution.  The diagonal entries  of  are 

the pivots.

U



Implications

Solve:            n=1,2,3,

(1) Obtain 

(2) Solve  with forward substitution for 

(3) Solve  with backward substitution for 

n n

n n n

n n n






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Ax b

A LU

Lc b c

Ux c x



Row Exchange

24

                                 

1 2 3 4 1 2 3 4

0 0 5 6 0 7 8
    

0 0 6 0 0 6

0 c 7 8 0 0 5 6

If 0, the problem is incurable and the matrix is

called singular.

c

d d
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Elimination with Row Exchange

Assume  is nonsingular, then there exists a 

permutation matrix  that reorders the rows of

 so that 

                          

A

R

A

RA LU



Round Off Error

Consider

1.0 1.0 0.0001 1.0
;        

1.0 1.0001 1.0 1.0

 :  Some matrices are extremely sensitive

to small changes, and others are not. The matrix  is 

ill-conditioned (i.e. sensitive);
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A A

First Point

A

  is well-conditioned.A
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2

1

2

 is "nearly" singular

1 1 1 1

1 1 1 1.0001

22
(1)   

02

2 1
(2)   

2.0001 1

No numerical methods can provide this

sensitivity to small perturbations!!!

x

x

x

x

   
    

   

 
   

 

  
    

  

A

A

Ax b

Ax b

Singular

matrix



Second Point: Even a well-conditioned 

matrix can be ruined by a poor algorithm.

1

2

1

2

0.0001 1.0 1.0

1.0 1.0 2.0

Correct solution:

10000
1.00010001 (round off after 9th digit)

9999

9998
0.99989998 (round off after 9th digit)

9999
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If a calculator is capable of keeping only 3 

digits, then Gaussian elimination gives the 

wrong answer!!!

1 2

1 2

1 2

(0.0001) 1                (A)

              2               (B)

Eq. (B) - 10000 Eq.(A):

(1.0 0.0001 10000.0) (1.0 1.0 10000.0)

                         =2.0 1.0 10000.0

1.0 1.0 10000.0 9999

x x

x x

x x
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2

1

.0

1.00 1.00E4 1.00E4

2.0 1.0 10000.0 9998.0

2.00 1.00E4 1.00E4

1.00  (not too bad)

Substituting into Eq.(A)

0.00 (This is wrong)

x

x
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Third Point

A computer program should compare each 

pivot with all the other possible pivots in 

the same column.  Choosing the largest of 

these candidates, and exchanging the 

corresponding rows so as to make this 

largest value pivot, is called partial pivoting.



Solution of m Equations with n 

Unknowns (m<n)

1 3 3 2

2 6 9 5

1 3 3 0

                  elementary row operation 

1 3 3 2

       0 0 3 1

0 0 6 2

                  elementary row operation 

1 3 3 2

0 0 3 1

0 0 0 0
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Echelon Form



Solution of m Equations with n 

Unknowns (m<n)

1 3 3 2

2 6 9 5

1 2 3 0

                  elementary row operation 

1 3 3 2

       0 0 3 1

0 1 6 2

                  elementary row operation 

1 3 3 2

0 1 6 2

0 0 3 1
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CONCLUSION

To any m by n matrix A there correspond a 

permutation matrix R, a lower triangular 

matrix L with unit diagonal, and an m by n 

echelon matrix U, such that

RA = LU



Homogeneous Solution

      

1 3 3 2 0

0 0 3 1 0

0 0 0 0 0

u

v

w

y



  

 
    
     
    
       

 

b 0

Ax 0 Ux 0

Ux

pivot



, :  basic variables

, :  free variables

1
3w+y=0  

3

3 3 2 0 

Express basic variables in terms of free var

 3

3 3 1

1 0

iable

/ 3 0 1 / 3

0 1
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 All solutions are linear combinations of 

-3 -1

1 0
                  and 

0 -1/3

0 1

 Within the 4-D space of all possible , the solution

   of   form a 2-D subspace.
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    the nullspace of  A



Conclusions

• Every homogeneous system Ax=0, if it has 

more unknowns than equations (n>m), has 

infinitely many nontrivial solutions. 

• The nullspace is a subspace of the same 

“dimension” as the number of free 

variables.

• The nullspace is a subspace of Rⁿ.



Subspace

A subspace of a vector space is a subset that 

satisfies two requirements:

1. If we add any two vectors x and y in the 

subspace, the sum x+y is still in the subspace.

2. If we multiply any vector x in the subspace by 

any scalar c, the multiple cx is still in the 

subspace.

Note that the zero vector belongs to every 

subspace.



Inhomogeneous Solution

1

1

2 1

3 2 1

1

3 2 1 2
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1 3 3 2

0 0 3 1 2

0 0 0 0 2 5

Note that the equations are inconsistent unless
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he set of attainable vectors 
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 1 2 3 4
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Conclusion

The system Ax=b is solvable if and 

only if the vector b can be 

expressed as a linear 

combination of the columns of A.
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Conclusions

1 3

  can be solved iff  lies in the plane

   that is spanned by  and .

 The plane is a subspace of  called column

   space of the matix .

 The equation  can be solved iff  lies

   in the c

mR
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Ax = b b

olumn space.
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0 0 0 0 0

1
3 3    1

3

3 3 2 1    2 3

2 3

0

1

0

u

v

w

y

u

v

w

y

w y w y

u v w y u y v

u

v
v

w

y

 
    
      
    
         

 

 
    
      
    
       

 

    

        

    
   
     
   
   
   

Ax b

Ux c

x

1

1 0

0 1/ 3

0 1

y

   
   
   
   
   
   

homogeneous solution

Ax=0

particular soln



CONCLUSIONS

• Suppose the mxn matrix A is reduced by 

elementary operations and row exchanges 

to a matrix U in echelon form.

• Let there be r nonzero pivots; the last m-r

rows of U are zero.  Then there will be r

basic variables and n-r free variables, 

corresponding to the columns of U with 

and without pivots respectively.



CONCLUSIONS

• The nullspace, formed of solutions to Ax=0, 

has the n-r free variables as the 

independent parameters.  If r=n, there are 

no free variables and the null space 

contains only x=0.

• Solutions exist for every right side b iff r=m, 

then U has no zero rows, and Ux=c can be 

solved by back-substitution.



CONCLUSIONS

• If r<m, U will have m-r zero rows and there 

are m-r constraints on b in order for Ax=b

to be solvable.  If one particular solution 

exists, then every other solution differs 

from it by a vector in the nullspace of A.

• The number r is called the rank of the 

matrix A.



Section 7.5  p40

7.5 Solutions of Linear Systems:

Existence, Uniqueness



Fundamental Theorem for Linear Systems

(a) Existence. 
A linear system of m equations in n unknowns x1, … ,xn

(1)

is consistent, that is, has solutions, if and only if the coefficient 
matrix A and the augmented matrix Ã  have the same rank. 

Section 7.5  p41

Theorem 1

7.5 Solutions of Linear Systems: Existence, Uniqueness

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

  

  

  

.

n n

n n

m m mn n m

a x a x a x b

a x a x a x b

a x a x a x b

   

   

   



Fundamental Theorem for Linear Systems (continued)

(a) Existence. (continued)

Here,

Section 7.5  p42

Theorem 1 (continued)

7.5 Solutions of Linear Systems: Existence, Uniqueness

11 1 11 1 1

1 1

          

n n

m mn m mn m

a a a a b

and

a a a a b
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    
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A A



Fundamental Theorem for Linear Systems (continued)

(b) Uniqueness. 

The system (1) has precisely one solution if and only if this 
common rank r of A and Ã equals n.

Section 7.5  p43

Theorem 1 (continued)

7.5 Solutions of Linear Systems: Existence, Uniqueness



Fundamental Theorem for Linear Systems (continued)

(c) Infinitely many solutions. 
If this common rank r is less than n, the system (1) has infinitely 
many solutions. All of these solutions are obtained by 
determining r suitable unknowns (whose submatrix of 
coefficients must have rank r) in terms of the remaining n − r 
unknowns, to which arbitrary values can be assigned. 
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Theorem 1 (continued)

7.5 Solutions of Linear Systems: Existence, Uniqueness



Fundamental Theorem for Linear Systems (continued)

(d) Gauss elimination (Sec. 7.3). 

If solutions exist, they can all be obtained by the Gauss 
elimination. (This method will automatically reveal whether 
or not solutions exist)
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Theorem 1 (continued)

7.5 Solutions of Linear Systems: Existence, Uniqueness
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Homogeneous Linear System

7.5 Solutions of Linear Systems: Existence, Uniqueness

A linear system (1) is called homogeneous if all the bj’s are 
zero, and nonhomogeneous if one or several bj’s are not 
zero.
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Homogeneous Linear System

A homogeneous linear system

(4)

always has the trivial solution x1 = 0, … , xn = 0. 

7.5 Solutions of Linear Systems: Existence, Uniqueness

Theorem 2

11 1 12 2 1

21 1 22 2 2

1 1 2 2

  0

  0

  

0

n n

n n

m m mn n

a x a x a x

a x a x a x

a x a x a x

   

   

   
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Homogeneous Linear System (continued)

Nontrivial solutions exist if and only if rank A < n. If rank 
A = r < n, these solutions, together with x = 0, form a vector 
space of dimension n − r called the solution space of (4).

In particular, if x(1) and x(2) are solution vectors of (4), then 
x = c1 x(1) + c2 x(2) with any scalars c1 and c2 is a solution 
vector of (4). (This does not hold for nonhomogeneous 
systems. Also, the term solution space is used for 
homogeneous systems only.)

Homogeneous Linear System

7.5 Solutions of Linear Systems: Existence, Uniqueness

Theorem 2 (continued)



The solution space of (4) is also called the null space of A 
because Ax = 0 for every x in the solution space of (4). Its 
dimension is called the nullity of A. Hence Theorem 2 
states that
(5) rank A + nullity A = n
where n is the number of unknowns (number of columns 
of A). 

By the definition of rank we have rank A ≤ m in (4). Hence 
if m < n, then rank A < n.

7.5 Solutions of Linear Systems: Existence, Uniqueness
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Homogeneous Linear System 

with Fewer Equations Than Unknowns

A homogeneous linear system with fewer equations than 
unknowns always has nontrivial solutions.

7.5 Solutions of Linear Systems: Existence, Uniqueness

Theorem 3
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Nonhomogeneous Linear System

If a nonhomogeneous linear system (1) is consistent, then all of 
its solutions are obtained as
(6) x = x0 + xh

where x0 is any (fixed) solution of (1) and xh runs through all 
the solutions of the corresponding homogeneous system (4).

7.5 Solutions of Linear Systems: Existence, Uniqueness

Theorem 4

Nonhomogeneous Linear System



Section 7.7  p52

7.7 Determinants. Cramer’s Rule



A determinant of order n is a scalar associated with an n × n
(hence square!) matrix A = [ajk], and is denoted by

(1)

For n = 1, this determinant is defined by

(2) D = a11.
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7.7 Determinants. Cramer’s Rule

11 12 1

21 22 2

1 2

det .

n

n

m m mn

a a a

a a a

D

a a a

    

  

A



For n ≥ 2 by

(3a) D = aj1Cj1 + aj2Cj2 + … + ajnCjn ( j = 1, 2, … , or n)
or
(3b) D = a1kC1k + a2kC2k + … + ankCnk (k = 1, 2, … , or n).

Here,
Cjk = (−1)j+kMjk

and Mjk is a determinant of order n − 1, namely, the 
determinant of the submatrix of A obtained from A by 
omitting the row and column of the entry ajk, that is, the jth 
row and the kth column.
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7.7 Determinants. Cramer’s Rule



In this way, D is defined in terms of n determinants of order 
n − 1, each of which is, in turn, defined in terms of n − 1 
determinants of order n − 2 and so on—until we finally 
arrive at second-order determinants, in which those 
submatrices consist of single entries whose determinant is 
defined to be the entry itself.

From the definition it follows that we may expand D by 
any row or column, that is, choose in (3) the entries in any 
row or column, similarly when expanding the Cjk’s in (3), 
and so on.

This definition is unambiguous, that is, it yields the same 
value for D no matter which columns or rows we choose in 
expanding. A proof is given in App. 4.
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7.7 Determinants. Cramer’s Rule



Terms used in connection with determinants are taken from 
matrices. In D we have n2 entries ajk also n rows and n 
columns, and a main diagonal on which a11, a22, … , ann 

stand. 
Two terms are new: Mjk is called the minor of ajk in D, and 
Cjk the cofactor of ajk in D.
For later use we note that (3) may also be written in terms of 
minors

(4a)

(4b)
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7.7 Determinants. Cramer’s Rule

1

1

( 1)           ( 1,2, ,  or )

( 1)           ( 1,2, ,  or )

n
j k

jk jk
k

n
j k

jk jk
j

D a M j n

D a M k n









  

  




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Minors and Cofactors of a Third-Order Determinant

In (4) of the previous section the minors and cofactors of 
the entries in the first column can be seen directly. For the 
entries in the second row the minors are

and the cofactors are C21 = −M21, C22 = +M22, and C23 = −M23 

Similarly for the third row—write these down yourself. 
And verify that the signs in Cjk form a checkerboard 
pattern

EXAMPLE 1

7.7 Determinants. Cramer’s Rule

12 13 11 13 11 12
21 22 23

32 33 31 33 31 32

,      ,      
a a a a a a

M M M
a a a a a a

  

     

     

     

  

  

  
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Expansions of a Third-Order Determinant

=1(12 − 0) − 3(4 + 4) + 0(0 + 6) = −12.

This is the expansion by the first row. The expansion by the 
third column is

Verify that the other four expansions also give the value −12.

EXAMPLE 2

7.7 Determinants. Cramer’s Rule

1 3 0
6 4 2 4 2 6

2 6 4 1 3 0
0 2 1 2 1 0

1 0 2

D    
 



2 6 1 3 1 3
0 4 2 0 12 0 12.

1 0 1 0 2 6
D        

 
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• There is an attractive way of finding determinants (1) 
that consists of applying elementary row operations to 
(1). 

• By doing so we obtain an “upper triangular” 
determinant  (see Sec. 7.1, for definition with “matrix” 
replaced by “determinant”) whose value is then very 
easy to compute, being just the product of its diagonal 
entries. 

• This approach is similar (but not the same!) to what we 
did to matrices in Sec. 7.3. In particular, be aware that 
interchanging two rows in a determinant introduces a 
multiplicative factor of −1 to the value of the determinant! 
Details are as follows.

General Properties of Determinants

7.7 Determinants. Cramer’s Rule



Behavior of an nth-Order Determinant 

under Elementary Row Operations

(a) Interchange of two rows multiplies the value of the determinant 
by −1.

(b) Addition of a multiple of a row to another row does not alter the 
value of the determinant.

(c) Multiplication of a row by a nonzero constant c multiplies the 
value of the determinant by c. (This holds also when c = 0, but no 
longer gives an elementary row operation.)
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7.7 Determinants. Cramer’s Rule

THEOREM 1
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Evaluation of Determinants 

by Reduction to Triangular Form

Because of Theorem 1 we may evaluate determinants by 
reduction to triangular form, as in the Gauss elimination

for a matrix. For instance (with the blue explanations 
always referring to the preceding determinant)

EXAMPLE 4

7.7 Determinants. Cramer’s Rule

2 0 4 6

4 5 1 0

0 2 6 1

3 8 9 1

D







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Evaluation of Determinants by Reduction to Triangular Form 
(continued)

EXAMPLE 4 (continued)

7.7 Determinants. Cramer’s Rule

2 0 4 6

0 5 9 12

0 2 6 1

0 8 3 10








Row 2  2 Row 1

Row 4  1.5 Row 1

2 0 4 6

0 5 9 12

0 0 2.4 3.8

0 0 11.4 29.2








Row 3  0.4 Row 2

Row 4  1.6 Row 2
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Evaluation of Determinants by Reduction to Triangular Form 
(continued)

EXAMPLE 4 (continued)

7.7 Determinants. Cramer’s Rule

2 0 4 6

0 5 9 12

0 0 2.4 3.8

0 0 0 47.25






 Row 4  4.75 Row 3

2 5 2.4 47.25 1134.    



Further Properties of nth-Order Determinants

(a)–(c) in Theorem 1 hold also for columns.

(d) Transposition leaves the value of a determinant unaltered.

(e) A zero row or column renders the value of a determinant zero.

(f ) Proportional rows or columns render the value of a 
determinant zero. In particular, a determinant with two identical 
rows or columns has the value zero.
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7.7 Determinants. Cramer’s Rule

THEOREM 2



Rank in Terms of Determinants

Consider an m × n matrix A = [ajk]:

(1) A has rank r ≥ 1 if and only if A has an r × r submatrix with a 
nonzero determinant.

(2) The determinant of any square submatrix with more than r rows, 
contained in A (if such a matrix exists!) has a value equal to zero.

Furthermore, if m = n, we have:

(3) An n × n square matrix A has rank n if and only if

det A ≠ 0.
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7.7 Determinants. Cramer’s Rule

THEOREM 3



Cramer’s Theorem 

(Solution of Linear Systems by Determinants)

(a) If a linear system of n equations in the same number of 
unknowns x1, … , xn

(6)

has a nonzero coefficient determinant D = det A, the system has 
precisely one solution. 
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7.7 Determinants. Cramer’s Rule

THEOREM 4

Cramer’s Rule

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

 

 

  

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

   

   

   



Cramer’s Theorem (Solution of Linear Systems by Determinants) 
(continued)

This solution is given by the formulas

(7)

where Dk is the determinant obtained from D by replacing in D the 
kth column by the column with the entries b1, … , bn.

(b) Hence if the system (6) is homogeneous and D ≠ 0, it has only 
the trivial solution x1 = 0, x2 = 0, … , xn = 0. 

If D = 0 the homogeneous system also has nontrivial solutions.
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7.7 Determinants. Cramer’s Rule

THEOREM 4 (continued)

1 2
1 2

,      ,     ,                  ( )n
n

DD D
x x x

D D D
   Cramer's rule
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7.8 Inverse of a Matrix.

Gauss–Jordan Elimination



In this section we consider square matrices exclusively.
The inverse of an n × n matrix A = [ajk] is denoted by A−1 and is 
an n × n matrix such that

(1) AA−1 = A−1A = I

where I is the n × n unit matrix (see Sec. 7.2).
If A has an inverse, then A is called a nonsingular matrix. If 

A has no inverse, then A is called a singular matrix.
If A has an inverse, the inverse is unique.
Indeed, if both B and C are inverses of A, then AB = I and 

CA = I so that we obtain the uniqueness from

B = IB = (CA)B = C(AB) = CI = C.
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7.8 Inverse of a Matrix.

Gauss–Jordan Elimination



Existence of the Inverse

The inverse A−1 of an n × n matrix A exists if and only if 
rank A = n, thus (by Theorem 3, Sec. 7.7) if and only if det A ≠ 0. 
Hence A is nonsingular if rank A = n and is singular if rank A < n.
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THEOREM 1

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination
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Determine the inverse A−1 of

Determination of the Inverse 

by the Gauss–Jordan Method

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

EXAMPLE 4 Finding the Inverse of a Matrix 

by Gauss–Jordan Elimination

1 1 2

3 1 1 .

1 3 4

 
 

 
 
  

A
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Solution. 
We apply the Gauss elimination (Sec. 7.3) to the following
n × 2n = 3 × 6 matrix, where BLUE always refers to the 
previous matrix.

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

EXAMPLE 4 (continued) Finding the Inverse 

of a Matrix by Gauss–Jordan Elimination

1 1 2 1 0 0

3 1 1 0 1 0

1 3 4 0 0 1

1 1 2 1 0 0

0 2 7 3 1 0

0 2 2 1 0 1

 
 

     
  

 
 


 
  

A I

Row 2  3 Row 1

Row 3  Row 1
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Solution. (continued 1)

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

1 1 2 1 0 0

0 2 7 3 1 0

0 0 5 4 1 1

 
 


 
     Row 3  Row 2

EXAMPLE 4 (continued) Finding the Inverse 

of a Matrix by Gauss–Jordan Elimination
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Solution. (continued 2)

This is [U  H] as produced by the Gauss elimination. Now 
follow the additional Gauss–Jordan steps, reducing U to I, 
that is, to diagonal form with entries 1 on the main 
diagonal.

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

1 1 2 1 0 0

0 1 3.5 1.5 0.5 0

0 0 1 0.8 0.2 0.2

   
 


 
  

 Row 1

0.5 Row 2

0.2 Row 3

EXAMPLE 4 (continued) Finding the Inverse 

of a Matrix by Gauss–Jordan Elimination



Section 7.8  p75

Solution. (continued 3)

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

1 1 0 0.6 0.4 0.4

0 1 0 1.3 0.2 0.7

0 0 1 0.8 0.2 0.2

  
 

  
 
  

Row 1  2 Row 3

Row 2  3.5 Row 3

1 0 0 0.7 0.2 0.3

0 1 0 1.3 0.2 0.7

0 0 1 0.8 0.2 0.2

 
 

  
 
  

Row 1  Row 2

EXAMPLE 4 (continued) Finding the Inverse 

of a Matrix by Gauss–Jordan Elimination
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Solution. (continued 4)

The last three columns constitute A−1. Check:

Hence AA−1 = I.  Similarly A−1A = I.

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

1 1 2 0.7 0.2 0.3 1 0 0

3 1 1 1.3 0.2 0.7 0 1 0 .

1 3 4 0.8 0.2 0.2 0 0 1

      
     

   
     
           

EXAMPLE 4 (continued) Finding the Inverse 

of a Matrix by Gauss–Jordan Elimination
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Inverse of a Matrix by Determinants

The inverse of a nonsingular n × n matrix A = [ajk] is given by

(4)

where Cjk is the cofactor of ajk in det A (see Sec. 7.7). 

Formulas for Inverses

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

THEOREM 2

11 21 1

1 21 22 2

1 2

1 1
,

det det

n

n
jk

n n nn

C C C

C C C
C

C C C



 
 
        
 
 

A
A A

T
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Inverse of a Matrix by Determinants (continued)

(CAUTION! Note well that in A−1, the cofactor Cjk occupies 
the same place as akj (not ajk) does in A.)

In particular, the inverse of

(4*)

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

THEOREM 2 (continued)

111 12 22 12

21 22 21 11

1
          .

det

a a a a
A is

a a a a


   
    

   
A

A
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7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

EXAMPLE 2 Inverse of a 2 × 2 Matrix by Determinants

3 1
,      

2 4

 
  
 

A 1 4 1 0.4 0.11

10 2 3 0.2 0.3


    
    

    
A
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Using (4), find the inverse of

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

EXAMPLE 3 Further Illustration of Theorem 2

1 1 2

3 1 1 .

1 3 4

 
 

 
 
  

A
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Solution. We obtain det A = −1(−7) − 1 · 13 + 2 · 8 = 10, 
and in (4),

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

EXAMPLE 3  (continued) Further Illustration of Theorem 2 

11 21 31

12 22 32

13 23 33

1 1 1 2 1 2
7,     2,     3,

3 4 3 4 1 1

3 1 1 2 1 2
13,     2,     7,

1 4 1 4 3 1

3 1 1 1 1 1
8,     2,     2,

1 3 1 3 3 1

C C C

C C C

C C C


       



 
         

  

 
       
  
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Solution. (continued)

so that by (4), in agreement with Example 1,

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

EXAMPLE 3  (continued) Further Illustration of Theorem 2 

1

0.7 0.2 0.3

1.3 0.2 0.7 .

0.8 0.2 0.2



 
 

  
 
  

A
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Products can be inverted by taking the inverse of each 
factor and multiplying these inverses in reverse order,

(7) (AC)−1 = C−1A−1.

Hence for more than two factors,

(8) (AC … PQ)−1 = Q−1P−1 … C−1A−1.

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination
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[1] Matrix multiplication is not commutative, that is, in 
general we have

AB ≠ BA.
[2] AB = 0 does not generally imply A = 0 or B = 0 
(or BA = 0); for example,

[3] AC = AD does not generally imply C = D 
(even when A ≠ 0).

Unusual Properties of Matrix Multiplication. 

Cancellation Laws

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

1 1 1 1 0 0
.

2 2 1 1 0 0

     
     

     
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Cancellation Laws

Let A, B, C be n × n matrices. Then:

(a) If rank A = n and AB = AC, then B = C.

(b) If rank A = n, then AB = 0 implies B = 0. Hence if AB = 0, 
but A ≠ 0 as well as B ≠ 0, then rank A < n and rank B < n.

(c) If A is singular, so are BA and AB.

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

THEOREM 3
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Determinant of a Product of Matrices

For any n × n matrices A and B,

(10) det (AB) = det (BA) = det A det B.

Determinants of Matrix Products

7.8 Inverse of a Matrix.

Gauss–Jordan Elimination

THEOREM 4


